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Transition from intermittency to periodicity in lag synchronization in coupled Ro ssler oscillators
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The dynamical and statistical behavior of lag synchronization in two coupled self-sustained chastar Ro
oscillators is reexamined. The lack of uniqueness in the conventional characterization of lag synchronization
based on the similarity function has caused much skepticism about the existence of lag synchronization. We
provide an evidence that the emergence of lag synchronization is associated with the transition from on-off
intermittency to a periodic structure in the laminar phase distribution.
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Recently, chaos synchronization in coupled systems hagresent paper is to explore the dynamical and statistic prop-
attracted great attention and has been extensively studiedrties of lag synchronization and to identify a transition from
One of the most important motivations is to understand théntermittency to periodicity. )
coherent dynamical behavior of the coupled systems. Several We adapt the systems of two Baer oscillators that are
typical synchronizations have been identified as comgtete  coupled with some parameter mismafaf,
full) synchronizatiorl1—4], generalized synchronizatid],

phase synchronizatidi§], and lag synchronizatiofv,8] and X127 — 0112~ Z1 5 €(X2 17 X1,9),

they represent the difference in the degree of correlation be- .

tween interacting systems. Among these synchronizations, Y12= w1 X1 ot aYy 2, (1)
complete synchronization is the strongest in the degree of _

correlation and describes the interaction of two identical sys- 23 ,=f+2; X1 ,—C).

tems, leading to their trajectories remaining identical in the
course of temporal evolution, i.e;(t) =X,(t). Generalized We choose the same set of parameters as used by the original
synchronization, as introduced for drive-response systems, uthors of the first paper on lag synchronizatj@i i.e., a
defined as the presence of a functional relationship betweer 0-165, f=0.2, =10, and w;,=wo* 6 (w=0.97, ¢

the states of the responser and driver, ig(f)="f(x,(t)). = 0-02, ®,=0.99, andw,=0.95). Here, 2 and ¢ deter-
Phase synchronization describes the identity in the phase 8fin€ the mismatch of the natural frequencies and coupling
nonidentical chaotic oscillators, whereas their amplitudesStrength’ respeptlvely. o

may remain chaotic and uncorrelated. Lag synchronization To characte'rlz.e "'?‘9 synchromzahon, Rosenbhmal.[?]'

has been proposed as the coincidence of the states of troduced a similarity fur_1ct|or$(7-) asa “T“e averaged dif-
coupled systems in which one of the system is delayed by grence tk))etween t.hﬁ va'rlablg§land Xz (with mean values
finite time 7, i.e., x;(t) =X,(t+ 7). More recently, a general- eing subtractedwith a time delayr,

ized time-lagged chaotic synchronization has been observed

2
in two unidirectionally coupled Chua’s circuits in the pres- S(r)= (DXt 1) —xa(D)] >> )
ence of large parameter mismatcH&3. Most recently, a [OE(D))(x5(1)) ]2
discussion on the relationship and definition of synchroniza-
tion has been reportdd0]. The minimum ofS(7) is denoted asr=min §(7) [we denote

There is a pressing need to further clarify the basic defithe corresponding lag time &@s i.e.,o=S(¢)]. Certainly, if
nition and fundamental concept of chaos synchronizatiodhe signalsx;(t) andx,(t) are independent, the difference
[10,11] as the field is expanding rapidly and is driven by its between them is of the same order as the signals themselves,
success in a variety of science and engineering applicatiorisg., S(7)~ 2 for all 7. If x;(t)=x,(t), as the case of com-
[12]. One typical problem concerns the realizability of the plete synchronization$(7) reaches its minimuno=0 for
lag synchronization as originally defined by the vanishing ofr=0. WhenS(7) has a minimum value for nonzero time
a similarity function[7]. Unlike the robust equality relation shift 7, indicating a time lag between the two processes, lag
in a complete synchronization, which obviously is a solutionsynchronization occurs. This condition has been extensively
of the coupled systems, the identity of two chaotic oscillatorsused to identify the transition to lag synchronizat|@i8].
with a time lag seems to be incredible and uncertain. As a The minimum of the similarity functiorr is depicted in
result, a similarity function has rarely been found to be iden-Fig. 1, together with the corresponding lag tigheversus the
tically zero and some researchers have proposed to use anupling . At first glance, it appears that the value @f
approximate equality to express the time-lagged synchronoudrops to zero with¢ being a nonzero value at the critical
relation[7,10]. Obviously, a more precise characterization ofcoupling strengthe,=0.15. In fact, Rosenblum and co-
lag synchronization is desired, as the concept has been w@forkers have described the following scenario to synchroni-
much interest to many investigatdi®|. The objective of the zation for this kind of coupled systems: with the increase in
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FIG. 1. The minimum of the similarity functioor and the cor-
responding lag timep vs the coupling strength labeled by star
and circle points, respectively. The zoomed-up parvofs ¢ is
displayed in the enlargement.
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can really be realized. If this is the case, is there any other
intrinsic feature associated with this chaos synchronization?
This problem is addressed in the rest of this paper.

First, we choose the coupling strength-0.1 below the
critical value e,=0.15, and plotx,(t) vs X,(t) and x,(t
+ ¢) in Figs. 2a) and 2b), respectively. The optimized lag
time ¢ is 0.42. It is clear thax,(t+ ¢) is not equal tox,(t)
even at the optimized lag tim¢. However, the time-shifted
plot [Fig. 2(b)] does show a more concentrated distribution
around the diagonal. In Fig.(®, the difference ofx,(t)
—X,(t+ ¢) is plotted against time. Obviously, the difference
exhibits typical feature of on-off intermittendy.3], which
usually appears at the chaos desynchronization of the
coupled identical systems with the “off” state near the lami-
nar phase state and the “on” state showing random bursts. It
is interesting to note that except for the irregularity in time,
the amplitude of bursts is very large and is of the order of

the coupling strength, phase synchronization occurs beforgystem states. To analyze the statistical feature of this irregu-
lag synchronization, and finally, complete synchronizationlar motion, we use the technique widely used in the statistical
takes place. However, a careful examination as shown in thanalysis of intermittency13] and compute numerically the
enlargement of Fig. 1 indicates that the minimum of thedistribution of laminar phases denoted by the amplitude less
similarity function o does not really vanish even at a very than a threshold valueA=2.0. A universal asymptotic

large coupling strengte (o~6x10 2 whene=0.2). It is
seen that only an approximate relatiof(t) ~X,(t+ ¢) ex-

—3/2 power-law distribution is observed in Fig(d2 for
these coupled nonidentical oscillator systems. This is quite

ists. In fact, for any two chaotic time series, one can alwaysypical for on-off intermittency. A similar result is obtained
utilize the similarity function defined above to choose anfor a smaller threshold valugé =1.0.

optimum lag time corresponding to the minimum of the simi-

Next we choose the coupling strength above the critical

larity function, and obtain an approximate equality betweervalue. For such a coupling strength, some change in coupled
x1(t) andx,(t+ ¢). So it seems that the concept of lag syn-states is expected due to lag synchronization. As shown in

chronization given by the relatior,(t) =X,(t+ ¢) is very

Fig. 3, we sete=0.2 and carry out our computation in the

sound. However, one may wonder whether lag synchronizasame manner as in Fig. 2. Indeed, the states of two systems

tion defined by the minimum of the similarity functigmerg

show a good approximate relatioxy(t) ~X,(t+ ¢) with ¢

20 20
10 10
—~—~
S :
\E\l 0 = 0
x Qal
X
-10 -10 FIG. 2. Atest case at=0.1,
below the critical coupling
o0 20 strengthe,=0.15. (a), (b) X5(t)
—20 -10 0 10 20 20 -10 0 10 20 andx,(t+ ¢) vsx,(t) are plotted,
X (t) respectively ¢=0.42). (c) The
1 on-off intermittency of xy(t)
. —X,(t+ ¢) vst. (d) The statistical
(d) distribution of laminar phases that
< shows the—3/2 power-law scal-
~ ing. The threshold value used to
compute the laminar phases As
=2.0.
\\
0 2000 4000 6000 8000 10000 0 1 2 3 4
t log 1 0(t)

036202-2



TRANSITION FROM INTERMITTENCY TO . .. PHYSICAL REVIEW E65 036202

20 20
(@) (b)
10 10
S 5
\f\j 0 +— 0
x o
x
-10 -10
FIG. 3. (8—(d) The same as
2% 10 0 10 20 2% 10 0 10 20 B e 2 e
- - - - =0.15 (¢#=0.21, A=0.1). The
X1 (t) X1 (t) amplitude of x;(t) —x,(t+ ¢) is
squeezed to the regime of
10 0.015 (—0.1,0.3) showingxy(t)~x,(t

+¢). The periodic distribution
shows the rotational period of a
single Rasler oscillator.

10
0 2000 4000 6000 8000 10000 0 10 20 30 40

t t

=0.21. The distribution is localized entirely at the diagonalsmaller than the critic poing=0.15. Results are shown in
[Fig. 3(b)] and the difference of states is much squeezed tdrig. 4. The trajectory is distributed essentially around the
the line of zerdFig. 3(c)]. However, the difference does not diagonal with some nonideal dots as depicted in Fig).4
vanish preciselyfsee the enlarged plot in Fig(3] and it  The difference of states as shown in Figbpindicates the
fluctuates in the neighborhood of-(0.1,0.3), which further co-existence of some large bursts similar to that in Fig) 2
illustrates the unsuitability of using the similarity function and some small ones similar to that in Figc)3 Figure 4c)
for the characterization of lag synchronization. shows the log-log plot of the distribution of the “laminar

In contrast to the appearance of Figc)2 the distribution  phase” with a threshold value &f=0.5 to catch the statis-
in Fig. 3(c) becomes more regular and is much smaller intical behavior of large bursts. In the distribution the universal
amplitude. If the lag-synchronized state is really a uniqueasymptotic—3/2 power law for on-off intermittency in the
physical state, it should exhibit anique featuran the dis- small time part and the large deviation in its shoulder at large
tribution of the difference of states below and above the lagimes are both observed. In contrast, if a small amplitude
synchronization. In Fig. @), we plot the distribution of the threshold valueA=0.2 is used in Fig. @) to compute the
“laminar phase” against the survival time in the same man-distribution of “laminar phase,” a periodic structure is ob-
ner as that in Fig. @). Instead of the chaotic distribution, we served. Figures(4) and 4d) clearly display the precursor of
observe a distinct periodic structure in the distribution of theemergence of lag synchronization: a transition from power
“laminar phase” by means of a small threshold valde law to a regular periodic distribution.
=0.1. The periodic distribution is characterizedtaynT,n We have thus confirmed the following scenario for the
=1,2,...,whereT is about the rotational period of a single onset of lag synchronization of chaotic oscillators. When the
Rossler oscillator. It should be pointed out that the periodic-coupling strength is much less than the critical point, the
ity is associated with statistic distribution, while the motions “laminar phase” distribution of the difference of states gives
of the coupled oscillators are still chaotic. the signature of on-off intermittency, the power-law scaling.

This regularity under the seemingly irregular minor mis- As the coupling strength is increased up to the critical point,
match of two oscillators is dramatically different from the the “laminar phase” distribution does not satisfy the power-
turbulent behavior of on-off intermittency observed when thelaw scaling and the on-off intermittency disappears. Instead,
coupling strength is far below the critical value. It is found the periodic structure dominates the “laminar phase” distri-
that lag synchronization leads to the transition from on-offbution[Fig. 3(d)]. Clearly, such change shows the emergence
intermittency to periodic bursts, and such a transition give®f lag synchronization.
rise to the sharp reduction in the similarity function. This It remains to verify that the critic coupling strengih
transition thus uniquely signals the emergence of lag syn=0.15 is a transition point in the sense of on-off intermit-
chronization. tency. In statistical analysis, the critical exponent-ot in

In an attempt to elucidate lag synchronization further, wethe power-law scaling of the mean laminar phase as a func-
choose the coupling strength=0.14, which is slightly tion of deviation from critical onset parameter is one of im-
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portant feature$13] for the onset of on-off intermittency. nization and complete synchronization is in order. It is well
Figure 5 shows the numerically determined mean laminaknown that the complete synchronization happens under one
phase as the function af=g.—¢ for the on-off intermit-  of the following two conditions. The first is the case where
tency behavior before lag synchronization. We use the techthere is an invariant manifold of chaos synchronous states for
nique as in Refl13]. The quantity plotted i& (t) —co, where  identical systems without parameter mismatch with a finite
L(t) is mean laminar phase arg} is determined from a coupling strength at a finite time. Second, complete synchro-
least-squares fit of the theoretical modgft)=co+c1/5.  nization can also occur for nonidentical systems with infinite
The fit gives parameters= —223.3 andc; =9.2. This case  coupling strength. It is believed that complete synchroniza-
clearly shows a power-law scaling of the mean laminar phasgon is typically characterized by the vanishing of on-off in-
for & neare., with a critical exponent of-1 indicating the  termittency of the laminar phase distributif8i4]. However,
transition. Meanwhile, the critical value of the coupling yhe present paper shows that there is an intermediate transi-
strengthe.=0.15 is also confirmed. tion in the laminar phase distribution, i.e., the transition from

A discussion of the common feature between lag synchrog,_o¢ intermittency to periodic bursts. We propose to use
this phenomenon as one of key features for an identification
of the onset of lag synchronization. Obviously these periodic
bursts will completely disappear as the coupling strength in-
500 creases to the infinity.

In conclusion, we have studied the statistical properties of
lag synchronization in two coupled chaotic $ter oscilla-
tors with small rotational parameter mismatch. The conven-
tional description based on the similarity function is neither
rigorous nor unique, and leads to some confusion in the char-
acterization of lag synchronization. The present investigation
0.01 0.03 005 reveals that the transition from on-off intermittency to a pe-

6 riodic structure in the laminar phase distribution is one of the
main features of this chaos synchronization. To our knowl-
edge, this is the first observation of such a periodic distribu-
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FIG. 5. A log-log plot of L(t)—cq vs & (6=e.—¢€, &,
=0.15). The critical exponent of 1 in the power-law scaling con- *
firms the on-off intermittent behavior before the onset of lag syn-t0N-
chronization and the existence of the critical coupling strergth This work was supported by the National University of
=0.15. Singapore.
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