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Transition from intermittency to periodicity in lag synchronization in coupled Rö ssler oscillators
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The dynamical and statistical behavior of lag synchronization in two coupled self-sustained chaotic Ro¨ssler
oscillators is reexamined. The lack of uniqueness in the conventional characterization of lag synchronization
based on the similarity function has caused much skepticism about the existence of lag synchronization. We
provide an evidence that the emergence of lag synchronization is associated with the transition from on-off
intermittency to a periodic structure in the laminar phase distribution.

DOI: 10.1103/PhysRevE.65.036202 PACS number~s!: 05.45.Xt, 05.45.Pq
h
ie

th
e

b
on

ys
th

s,
e

e
e

tio
t
y

-
rv
s-

za

efi
tio
its
io
he
o

on
or
s
n
e
o
o
n

rop-
m

iginal

ling

-

e
lves,
-

e
lag
ely

l
-
ni-
in
Recently, chaos synchronization in coupled systems
attracted great attention and has been extensively stud
One of the most important motivations is to understand
coherent dynamical behavior of the coupled systems. Sev
typical synchronizations have been identified as complete~or
full ! synchronization@1–4#, generalized synchronization@5#,
phase synchronization@6#, and lag synchronization@7,8# and
they represent the difference in the degree of correlation
tween interacting systems. Among these synchronizati
complete synchronization is the strongest in the degree
correlation and describes the interaction of two identical s
tems, leading to their trajectories remaining identical in
course of temporal evolution, i.e.,x1(t)5x2(t). Generalized
synchronization, as introduced for drive-response system
defined as the presence of a functional relationship betw
the states of the responser and driver, i.e.,x1(t)5 f „x2(t)….
Phase synchronization describes the identity in the phas
nonidentical chaotic oscillators, whereas their amplitud
may remain chaotic and uncorrelated. Lag synchroniza
has been proposed as the coincidence of the states of
coupled systems in which one of the system is delayed b
finite time t, i.e.,x1(t)5x2(t1t). More recently, a general
ized time-lagged chaotic synchronization has been obse
in two unidirectionally coupled Chua’s circuits in the pre
ence of large parameter mismatches@9#. Most recently, a
discussion on the relationship and definition of synchroni
tion has been reported@10#.

There is a pressing need to further clarify the basic d
nition and fundamental concept of chaos synchroniza
@10,11# as the field is expanding rapidly and is driven by
success in a variety of science and engineering applicat
@12#. One typical problem concerns the realizability of t
lag synchronization as originally defined by the vanishing
a similarity function@7#. Unlike the robust equality relation
in a complete synchronization, which obviously is a soluti
of the coupled systems, the identity of two chaotic oscillat
with a time lag seems to be incredible and uncertain. A
result, a similarity function has rarely been found to be ide
tically zero and some researchers have proposed to us
approximate equality to express the time-lagged synchron
relation@7,10#. Obviously, a more precise characterization
lag synchronization is desired, as the concept has bee
much interest to many investigators@8#. The objective of the
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present paper is to explore the dynamical and statistic p
erties of lag synchronization and to identify a transition fro
intermittency to periodicity.

We adapt the systems of two Ro¨ssler oscillators that are
coupled with some parameter mismatch@7#,

ẋ1,252v1,2y1,22z1,21«~x2,12x1,2!,

ẏ1,25v1,2x1,21ay1,2, ~1!

ż1,25 f 1z1,2~x1,22c!.

We choose the same set of parameters as used by the or
authors of the first paper on lag synchronization@7#, i.e., a
50.165, f 50.2, c510, and v1,25v06u (v050.97, u
50.02, v150.99, andv250.95). Here, 2u and « deter-
mine the mismatch of the natural frequencies and coup
strength, respectively.

To characterize lag synchronization, Rosenblumet al. @7#
introduced a similarity functionS(t) as a time averaged dif
ference between the variablesx1 and x2 ~with mean values
being subtracted! with a time delayt,

S~t!5A^@x2~ t1t!2x1~ t !#2&

@^x1
2~ t !&^x2

2~ t !&#1/2
>0. ~2!

The minimum ofS(t) is denoted ass5mintS(t) @we denote
the corresponding lag time asf, i.e.,s5S(f)#. Certainly, if
the signalsx1(t) and x2(t) are independent, the differenc
between them is of the same order as the signals themse
i.e., S(t)'A2 for all t. If x1(t)5x2(t), as the case of com
plete synchronization,S(t) reaches its minimums50 for
t50. When S(t) has a minimum value for nonzero tim
shift t, indicating a time lag between the two processes,
synchronization occurs. This condition has been extensiv
used to identify the transition to lag synchronization@7,8#.

The minimum of the similarity functions is depicted in
Fig. 1, together with the corresponding lag timef, versus the
coupling «. At first glance, it appears that the value ofs
drops to zero withf being a nonzero value at the critica
coupling strength«c50.15. In fact, Rosenblum and co
workers have described the following scenario to synchro
zation for this kind of coupled systems: with the increase
©2002 The American Physical Society02-1
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the coupling strength, phase synchronization occurs be
lag synchronization, and finally, complete synchronizat
takes place. However, a careful examination as shown in
enlargement of Fig. 1 indicates that the minimum of t
similarity function s does not really vanish even at a ve
large coupling strength« (s'631023 when«50.2). It is
seen that only an approximate relationx1(t)'x2(t1f) ex-
ists. In fact, for any two chaotic time series, one can alw
utilize the similarity function defined above to choose
optimum lag time corresponding to the minimum of the sim
larity function, and obtain an approximate equality betwe
x1(t) andx2(t1f). So it seems that the concept of lag sy
chronization given by the relationx1(t)5x2(t1f) is very
sound. However, one may wonder whether lag synchron
tion defined by the minimum of the similarity function~zero!

FIG. 1. The minimum of the similarity functions and the cor-
responding lag timef vs the coupling strength« labeled by star
and circle points, respectively. The zoomed-up part ofs vs « is
displayed in the enlargement.
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can really be realized. If this is the case, is there any ot
intrinsic feature associated with this chaos synchronizati
This problem is addressed in the rest of this paper.

First, we choose the coupling strength«50.1 below the
critical value «c50.15, and plotx1(t) vs x2(t) and x2(t
1f) in Figs. 2~a! and 2~b!, respectively. The optimized lag
time f is 0.42. It is clear thatx2(t1f) is not equal tox1(t)
even at the optimized lag timef. However, the time-shifted
plot @Fig. 2~b!# does show a more concentrated distributi
around the diagonal. In Fig. 2~c!, the difference ofx1(t)
2x2(t1f) is plotted against time. Obviously, the differenc
exhibits typical feature of on-off intermittency@13#, which
usually appears at the chaos desynchronization of
coupled identical systems with the ‘‘off’’ state near the lam
nar phase state and the ‘‘on’’ state showing random burst
is interesting to note that except for the irregularity in tim
the amplitude of bursts is very large and is of the order
system states. To analyze the statistical feature of this irre
lar motion, we use the technique widely used in the statist
analysis of intermittency@13# and compute numerically the
distribution of laminar phases denoted by the amplitude l
than a threshold valueD52.0. A universal asymptotic
23/2 power-law distribution is observed in Fig. 2~d! for
these coupled nonidentical oscillator systems. This is q
typical for on-off intermittency. A similar result is obtaine
for a smaller threshold valueD51.0.

Next we choose the coupling strength above the criti
value. For such a coupling strength, some change in cou
states is expected due to lag synchronization. As show
Fig. 3, we set«50.2 and carry out our computation in th
same manner as in Fig. 2. Indeed, the states of two syst
show a good approximate relation,x1(t)'x2(t1f) with f
t

o

FIG. 2. A test case at«50.1,
below the critical coupling
strength «c50.15. ~a!, ~b! x2(t)
andx2(t1f) vs x1(t) are plotted,
respectively (f50.42). ~c! The
on-off intermittency of x1(t)
2x2(t1f) vs t. ~d! The statistical
distribution of laminar phases tha
shows the23/2 power-law scal-
ing. The threshold value used t
compute the laminar phases isD
52.0.
2-2
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FIG. 3. ~a!–~d! The same as
Fig. 2, with «50.2, above «c

50.15 (f50.21, D50.1). The
amplitude of x1(t)2x2(t1f) is
squeezed to the regime o
(20.1,0.3) showingx1(t)'x2(t
1f). The periodic distribution
shows the rotational period of a
single Rössler oscillator.
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50.21. The distribution is localized entirely at the diagon
@Fig. 3~b!# and the difference of states is much squeezed
the line of zero@Fig. 3~c!#. However, the difference does no
vanish precisely@see the enlarged plot in Fig. 3~c!# and it
fluctuates in the neighborhood of (20.1,0.3), which further
illustrates the unsuitability of using the similarity functio
for the characterization of lag synchronization.

In contrast to the appearance of Fig. 2~c!, the distribution
in Fig. 3~c! becomes more regular and is much smaller
amplitude. If the lag-synchronized state is really a uniq
physical state, it should exhibit aunique featurein the dis-
tribution of the difference of states below and above the
synchronization. In Fig. 3~d!, we plot the distribution of the
‘‘laminar phase’’ against the survival time in the same ma
ner as that in Fig. 2~d!. Instead of the chaotic distribution, w
observe a distinct periodic structure in the distribution of
‘‘laminar phase’’ by means of a small threshold valueD
50.1. The periodic distribution is characterized byt5nT,n
51,2, . . . ,whereT is about the rotational period of a sing
Rössler oscillator. It should be pointed out that the period
ity is associated with statistic distribution, while the motio
of the coupled oscillators are still chaotic.

This regularity under the seemingly irregular minor m
match of two oscillators is dramatically different from th
turbulent behavior of on-off intermittency observed when
coupling strength is far below the critical value. It is foun
that lag synchronization leads to the transition from on-
intermittency to periodic bursts, and such a transition gi
rise to the sharp reduction in the similarity function. Th
transition thus uniquely signals the emergence of lag s
chronization.

In an attempt to elucidate lag synchronization further,
choose the coupling strength«50.14, which is slightly
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smaller than the critic point«50.15. Results are shown i
Fig. 4. The trajectory is distributed essentially around
diagonal with some nonideal dots as depicted in Fig. 4~a!.
The difference of states as shown in Fig. 4~b! indicates the
co-existence of some large bursts similar to that in Fig. 2~c!
and some small ones similar to that in Fig. 3~c!. Figure 4~c!
shows the log-log plot of the distribution of the ‘‘lamina
phase’’ with a threshold value ofD50.5 to catch the statis
tical behavior of large bursts. In the distribution the univer
asymptotic23/2 power law for on-off intermittency in the
small time part and the large deviation in its shoulder at la
times are both observed. In contrast, if a small amplitu
threshold valueD50.2 is used in Fig. 4~d! to compute the
distribution of ‘‘laminar phase,’’ a periodic structure is ob
served. Figures 4~c! and 4~d! clearly display the precursor o
emergence of lag synchronization: a transition from pow
law to a regular periodic distribution.

We have thus confirmed the following scenario for t
onset of lag synchronization of chaotic oscillators. When
coupling strength is much less than the critical point, t
‘‘laminar phase’’ distribution of the difference of states giv
the signature of on-off intermittency, the power-law scalin
As the coupling strength is increased up to the critical po
the ‘‘laminar phase’’ distribution does not satisfy the powe
law scaling and the on-off intermittency disappears. Inste
the periodic structure dominates the ‘‘laminar phase’’ dis
bution@Fig. 3~d!#. Clearly, such change shows the emergen
of lag synchronization.

It remains to verify that the critic coupling strength«c
50.15 is a transition point in the sense of on-off interm
tency. In statistical analysis, the critical exponent of21 in
the power-law scaling of the mean laminar phase as a fu
tion of deviation from critical onset parameter is one of im
2-3
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FIG. 4. ~a!–~d! The same as
Fig. 2, with «50.14, below and
very close the critical coupling
(f50.30). The large fluctuation
of on-off intermittency is much
squeezed. Threshold values fo
laminar phases areD50.5 for ~c!
andD50.2 for ~d!, respectively.
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portant features@13# for the onset of on-off intermittency
Figure 5 shows the numerically determined mean lami
phase as the function ofd5«c2« for the on-off intermit-
tency behavior before lag synchronization. We use the te
nique as in Ref.@13#. The quantity plotted isL(t)2c0, where
L(t) is mean laminar phase andc0 is determined from a
least-squares fit of the theoretical modelL(t)5c01c1 /d.
The fit gives parametersc052223.3 andc159.2. This case
clearly shows a power-law scaling of the mean laminar ph
for « near«c , with a critical exponent of21 indicating the
transition. Meanwhile, the critical value of the couplin
strength«c50.15 is also confirmed.

A discussion of the common feature between lag synch

FIG. 5. A log-log plot of L(t)2c0 vs d (d5«c2«, «c

50.15). The critical exponent of21 in the power-law scaling con
firms the on-off intermittent behavior before the onset of lag s
chronization and the existence of the critical coupling strength«c

50.15.
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nization and complete synchronization is in order. It is w
known that the complete synchronization happens under
of the following two conditions. The first is the case whe
there is an invariant manifold of chaos synchronous states
identical systems without parameter mismatch with a fin
coupling strength at a finite time. Second, complete synch
nization can also occur for nonidentical systems with infin
coupling strength. It is believed that complete synchroni
tion is typically characterized by the vanishing of on-off i
termittency of the laminar phase distribution@3,4#. However,
the present paper shows that there is an intermediate tra
tion in the laminar phase distribution, i.e., the transition fro
on-off intermittency to periodic bursts. We propose to u
this phenomenon as one of key features for an identifica
of the onset of lag synchronization. Obviously these perio
bursts will completely disappear as the coupling strength
creases to the infinity.

In conclusion, we have studied the statistical properties
lag synchronization in two coupled chaotic Ro¨ssler oscilla-
tors with small rotational parameter mismatch. The conv
tional description based on the similarity function is neith
rigorous nor unique, and leads to some confusion in the c
acterization of lag synchronization. The present investigat
reveals that the transition from on-off intermittency to a p
riodic structure in the laminar phase distribution is one of
main features of this chaos synchronization. To our kno
edge, this is the first observation of such a periodic distri
tion.

This work was supported by the National University
Singapore.
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